Моя корзина Моя корзина
Сейчас корзина пуста.

Мой профиль
Адрес

  • 069888666.md анализ Факторный Carnet 50 pagini (40) 6с24 069888666.md analiz faktornyj


    069888666.md анализ Факторный Carnet 50 pagini (40) 6с24 069888666.md analiz faktornyj

    Краткая история[править исходный текст]

    • в каждой строке матрицы вторичной структуры V должен быть хотя бы один нулевой элемент;
    • Для каждого столбца k матрицы вторичной структуры V должно существовать подмножество из r линейно-независимых наблюдаемых переменных, корреляции которых с k-м вторичным фактором — нулевые. Данный критерий сводится к тому, что каждый столбец матрицы должен содержать не менее r нулей.
    • У одного из столбцов каждой пары столбцов матрицы V должно быть несколько нулевых коэффициентов (нагрузок) в тех позициях, где для другого столбца они ненулевые. Это предположение гарантирует различимость вторичных осей и соответствующих им подпространств размерности r—1 в пространстве общих факторов.
    • При числе общих факторов больше четырех в каждой паре столбцов должно быть некоторое количество нулевых нагрузок в одних и тех же строках. Данное предположение дает возможность разделить наблюдаемые переменные на отдельные скопления.
    • Для каждой пары столбцов матрицы V должно быть как можно меньше значительных по величине нагрузок, соответствующих одним и тем же строкам. Это требование обеспечивает минимизацию сложности переменных.

    (В определении Мьюлейка через r обозначено число общих факторов, а V — матрица вторичной структуры, образованная координатами (нагрузками) вторичных факторов, получаемых в результате вращения.) Вращение бывает:

    • ортогональным
    • косоугольным.

    При первом виде вращения каждый последующий фактор определяется так, чтобы максимизировать изменчивость, оставшуюся от предыдущих, поэтому факторы оказываются независимыми, некоррелированными друг от друга (к этому типу относится МГК). Второй вид — это преобразование, при котором факторы коррелируют друг с другом. Преимущество косоугольного вращения состоит в следующем: когда в результате его выполнения получаются ортогональные факторы, можно быть уверенным, что эта ортогональность действительно им свойственна, а не привнесена искусственно. Существует около 13 методов вращения в обоих видах, в статистической программе SPSS 10 доступны пять: три ортогональных, один косоугольный и один комбинированный, однако из всех наиболее употребителен ортогональный метод «варимакс». Метод «варимакс» максимизирует разброс квадратов нагрузок для каждого фактора, что приводит к увеличению больших и уменьшению малых значений факторных нагрузок. В результате простая структура получается для каждого фактора в отдельности[1][3][2].

    Главной проблемой факторного анализа является выделение и интерпретация главных факторов. При отборе компонент исследователь обычно сталкивается с существенными трудностями, так как не существует однозначного критерия выделения факторов, и потому здесь неизбежен субъективизм интерпретаций результатов. Существует несколько часто употребляемых критериев определения числа факторов. Некоторые из них являются альтернативными по отношению к другим, а часть этих критериев можно использовать вместе, чтобы один дополнял другой:

    • Критерий Кайзера или критерий собственных чисел. Этот критерий предложен Кайзером, и является, вероятно, наиболее широко используемым. Отбираются только факторы с собственными значениями равными или большими 1. Это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается[1].
    • Критерий каменистой осыпи или критерий отсеивания. Он является графическим методом, впервые предложенным психологом Кэттелом. Собственные значения возможно изобразить в виде простого графика. Кэттел предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» — «осыпь» является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона[1]. Однако этот критерий отличается высокой субъективностью и, в отличие от предыдущего критерия, статистически необоснован. Недостатки обоих критериев заключаются в том, что первый иногда сохраняет слишком много факторов, в то время как второй, напротив, может сохранить слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике возникает важный вопрос: когда полученное решение может быть содержательно интерпретировано. В этой связи предлагается использовать ещё несколько критериев.
    • Критерий значимости. Он особенно эффективен, когда модель генеральной совокупности известна и отсутствуют второстепенные факторы. Но критерий непригоден для поиска изменений в модели и реализуем только в факторном анализе по методу наименьших квадратов или максимального правдоподобия[1].
    • Критерий доли воспроизводимой дисперсии. Факторы ранжируются по доле детерминируемой дисперсии, когда процент дисперсии оказывается несущественным, выделение следует остановить[1]. Желательно, чтобы выделенные факторы объясняли более 80 % разброса. Недостатки критерия: во-первых, субъективность выделения, во-вторых, специфика данных может быть такова, что все главные факторы не смогут совокупно объяснить желательного процента разброса. Поэтому главные факторы должны вместе объяснять не меньше 50,1 % дисперсии.
    • Критерий интерпретируемости и инвариантности. Данный критерий сочетает статистическую точность с субъективными интересами. Согласно ему, главные факторы можно выделять до тех пор, пока будет возможна их ясная интерпретация. Она, в свою очередь, зависит от величины факторных нагрузок, то есть если в факторе есть хотя бы одна сильная нагрузка, он может быть интерпретирован. Возможен и обратный вариант — если сильные нагрузки имеются, однако интерпретация затруднительна, от этой компоненты предпочтительно отказаться[1][3].

    Практика показывает, что если вращение не произвело существенных изменений в структуре факторного пространства, это свидетельствует о его устойчивости и стабильности данных. Возможны ещё два варианта: 1). сильное перераспределение дисперсии — результат выявления латентного фактора; 2). очень незначительное изменение (десятые, сотые или тысячные доли нагрузки) или его отсутствие вообще, при этом сильные корреляции может иметь только один фактор, — однофакторное распределение. Последнее возможно, например, когда на предмет наличия определённого свойства проверяются несколько социальных групп, однако искомое свойство есть только у одной из них.

    Факторы имеют две характеристики: объём объясняемой дисперсии и нагрузки. Если рассматривать их с точки зрения геометрической аналогии, то касательно первой отметим, что фактор, лежащий вдоль оси ОХ, может максимально объяснять 70 % дисперсии (первый главный фактор), фактор, лежащий вдоль оси ОУ, способен детерминировать не более 30 % (второй главный фактор). То есть в идеальной ситуации вся дисперсия может быть объяснена двумя главными факторами с указанными долями[5]. В обычной ситуации может наблюдаться два или более главных факторов, а также остаётся часть неинтерпретируемой дисперсии (геометрические искажения), исключаемая из анализа по причине незначимости. Нагрузки, опять же с точки зрения геометрии, есть проекции от точек на оси ОХ и ОУ (при трёх- и более факторной структуре также на ось ОZ). Проекции — это коэффициенты корреляции, точки — наблюдения, таким образом, факторные нагрузки являются мерами связи. Так как сильной считается корреляция с коэффициентом Пирсона R ≥ 0,7, то в нагрузках нужно уделять внимание только сильным связям. Факторные нагрузки могут обладать свойствомбиполярности — наличием положительных и отрицательных показателей в одном факторе. Если биполярность присутствует, то показатели, входящие в состав фактора, дихотомичны и находятся в противоположных координатах[1].





    Автор: EVM- Angro от 31.07.2014   |  Оценка  




     
      



    Также читайте следующие новости
    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Автор EVM- Angro

    Связанные статьи
    069888666.md cello finegrip ciornyj rucka Cello Finegrip NEGRU Stilou Cello Finegrip ЧЁРНЫЙ Ручка
    Эксклюзивная доставка канцтоваров в Кишиневе
    LUCRU IN OFICIU
    069888666.md купить канцтовары
    Статья 069888666.md №1 О канцтоварах в Молдове 11с26 Carnet (40) statiea 069888666.md #1 o kanttovarah v moldove
    069888666.md Кишинёв гелиевые шары кишинев Канцтовары Plicuri С5 С5 069888666.md kisiniov gelievye sary kisinev kanttovary
    magazin 069888666.md trend chisinau magazin 069888666.md trend chisinau
    069888666.md №1 О канцтоварах в Молдове Статья Carnet (40) 11с26 069888666.md #1 o kanttovarah v moldove statiea
    069888666.md statiea #1 o kanttovarah v moldove Carnet 11с26 (40) 069888666.md Статья №1 О канцтоварах в Молдове
    069888666.md В помощь родителям первокласника.
    069888666.md С августа по октябрь на рынке канцтоваров отмечен бурный рост продаж
    cu clei 069888666.md pistol cu clei 069888666.md pistol
    069888666.md Что такое канцтовары?
    ДОСТАВКА
    069888666.md Промоутеры и промо акции в реале для канцтоваров
    069888666.md Статья №1 О канцтоварах в Молдове (Копия)
    069888666.md БАТАРЕЙКИ ВЕДУЩИХ ФИРМ МИРА
    069888666.md Коэффициент тупости веб-промоутера или коэффициент неэффективности раскрутки.
    069888666.md Канцтовары Кишинёв baloane
    CMS Status-X
    Все товары
    Калькуляторы
    Канцтовары
    Скидки, акции